首页> 外文OA文献 >Efficient Squares and Turing Universality at Temperature 1 with a Unique Negative Glue
【2h】

Efficient Squares and Turing Universality at Temperature 1 with a Unique Negative Glue

机译:具有独特的温度1的高效方块和图灵普遍性   负胶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Is Winfree's abstract Tile Assembly Model (aTAM) "powerful?" Well, if certaintiles are required to "cooperate" in order to be able to bind to a growing tileassembly (a.k.a., temperature 2 self-assembly), then Turing universalcomputation and the efficient self-assembly of $N \times N$ squares isachievable in the aTAM (Rotemund and Winfree, STOC 2000). So yes, in acomputational sense, the aTAM is quite powerful! However, if one completelyremoves this cooperativity condition (a.k.a., temperature 1 self-assembly),then the computational "power" of the aTAM (i.e., its ability to support Turinguniversal computation and the efficient self-assembly of $N \times N$ squares)becomes unknown. On the plus side, the aTAM, at temperature 1, isn't onlyTuring universal but also supports the efficient self-assembly $N \times N$squares if self-assembly is allowed to utilize three spatial dimensions (Fu,Schweller and Cook, SODA 2011). We investigate the theoretical "power" of aseemingly simple, restrictive class of tile assembly systems (TASs) in which(1) the absolute value of every glue strength is 1, (2) there's a singlenegative strength glue type and (3) unequal glues can't interact. We call thesethe \emph{restricted glue} TASs (rgTAS). We first show the tile complexity ofproducing an $N \times N$ square with an rgTAS is $O(\frac{\log n}{\log \logn})$. We also prove that rgTASs are Turing universal with a construction thatsimulates an arbitrary Turing machine. Next, we provide results for a variationof the rgTAS class, partially restricted glue TASs, which is similar exceptthat the magnitude of the negative glue's strength can only assumed to be $\ge1$. These results consist of a construction with $O(\log n)$ tile complexityfor building $N \times N$ squares, and one which simulates a Turing machine butwith a greater scaling factor than for the rgTAS construction.
机译:Winfree的抽象Tile Assembly Model(aTAM)是否“功能强大”?好吧,如果需要某些砖块“合作”以便能够绑定到不断增长的瓷砖组件(又名温度2自组装),则可以实现图灵通用计算和$ N \ times N $平方的有效自组装。 aTAM(Rotemund和Winfree,STOC 2000)。所以是的,在计算意义上,aTAM非常强大!但是,如果完全消除了这种协作性条件(又名温度1自组装),则aTAM的计算“能力”(即,它支持Turinguniversal计算和$ N \ times N $平方的有效自组装的能力) )变为未知。从好的方面来说,温度为1时的aTAM不仅具有通用性,而且还支持有效的自组装$ N \ x N $ squares(如果允许自组装利用三个空间维度(Fu,Schweller和Cook, SODA 2011)。我们研究了看似简单,限制性级别的瓷砖装配系统(TAS)的理论“功效”,其中(1)每种胶水强度的绝对值为1,(2)胶水类型为单负强度,(3)不等胶水不能互动。我们称这些为\ emph {restricted粘胶} TAS(rgTAS)。我们首先显示使用rgTAS生成$ N \ times N $正方形的图块复杂度为$ O(\ frac {\ log n} {\ log \ logn})$。我们还证明了rgTAS具有图灵通用性,其结构可模拟任意图灵机。接下来,我们提供rgTAS类,部分受限胶TAS的变体的结果,该结果类似,只是负胶强度的大小只能假定为\\ ge1 $。这些结果包括一种结构,该结构的复杂度为$ O(\ log n)$,用于构建$ N \ times N $的正方形,以及一种模拟Turing机器但缩放比例因子大于rgTAS构造的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号